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SUMMARY

The main object of the second phase of this work was to design and
test sheaths that would enable rhenium sensors to measure temperatures
to 53000R, to an accuracy of 5OOR, ina graphite /hydrogen/nuclear
environment.

High temperature ultrasonic measurements were conducted to
5300°R ina graphite environment using a Ta sheathed Re sensor. It was
found that the system could measure a temperature of 5100°R in a graphite
environment for 67 minutes, and this same system could measure tem-
peratures greater than 4800°R for three hours. However, the sheath
failed after three minutes at 5300 R. The tantalum sheath protected the
Re sensor from the carbon environment provided the wall thickness of
the sheath exceeded 0. 010",

Similar ultrasonic tests were performed in a graphite atmosphere
using either chemically vapor deposited tungsten tubing or wrought W-2%
'1“hO2 tubing in place of the tantalum tubing. The chemically vapor deposited
tubing failed on several occasions after being heated for 3-5 minutes at
a temperature of 5100°R. The wrought W-2% ThOZ tubing operated satis-
factorily for one hour at 49000R.

It is recommended that a tantalum sheath clad with an outer layer
of chemically vapor deposited metal be used in Phase III to protect the sensor

from the graphite/hydrogen environment.



INTRODUCTION

Statement of the Problem

One of the most important measurements required in nuclear
rocket engine technology is the measurement of temperature. This
measurement has proven to be extremely difficult because of the high
temperature involved (> 5OOOOR), because of compatibility problems
with some of the materials involved (graphite and hydrogen) and be-
cause of the intense transient and sustained neutron and gamma fluxes.
Additional difficulties stem from the possibility of temperature over-
shoot, high pressure, flow, accessibility and geometrical restrictions,
shock and vibration levels expected in some locations, etc.

Phase II Objective

The main objective of Phase II was to design and test sheaths
that would enable rhenium sensors to measure temperatures to 53000R
in a carbon/hydrogen environment for one hour. Since thed%emperatu.fe
goal of 53OOOR is above the rhenium-carbon eutectic (49660R), it follows
that, if rhenium is to be used as the sensor, a sheath is required. Table
I lists the eutectic temperatures for the materials that céuld be used in
a complete sheath system. The design of the sheath also entails the
satisfactory placement of a sensor in the sheath. Although there are
no electrical shorting problems there are potential acoustic isolation

problems.

EXPERIMENTAL INVESTIGATIONS

Background

In the ultrasonic temperature measuring system, temperature
is determined by measuring the round trip transit time of the ultrasonic
signal in a wire sensor. Transit time is determined by measuring the
time between the signals reflected from the beginning and end of the sensor.

For most materials, as temperature increases, transit time increases.



The transit time can be measured to + 0. vl B sec with the Pana- Therm
5000, and at 5000°R the system will be able to measure temperature
within + 50°R.

In the present work the ultrasonic line usually consists of a
Remendur transducer wire, a tungsten lead-in wire, and the rhenium
sensor (Fig. 1). Joints were formed satisfactorily by flash butt weld-
ing. Echoes reflected by the various discontinuities, either welds or
changes in diameter, were essentially equal to that predicted by theory.

Acoustic Isolation

In designing the sheath system, it is necessary to acoustically
isolate the sensor and the lead-in wire from the sheath if satisfactory
ultrasonic signals are to be obtained. Acoustic isolation has been
realized by wrapping a spiral spacer wire around the sensor and lead-in
wire. Investigations have shown that this isolation method is satisfactory
if the diameters of the lead-in and sensor wires are at least ten times
greater than that of the spacer wire. For this large impedance mis-
match very little of the ultrasonic signal will be coupled out of the line.
Also, since the wavelength of the ultrasonic signal is about two orders
of magnitude greater than the diameter of the spiral spacer wire, the
ultrasonic wave does not '"see' the individual spiral spacer wire turns,
i.e., the spiral spacer wire does not produce interfering echoes. For
a 0. 040" W lead-in line and a 0. 030" Re sensor, a 0. 002" W spiral
spacer wire has been found to be satisfactory for pulse widths less than
30 psec {Fig. 2).

Attenuation

Besides changes in transit time, as temperature increases, the
amplitude of the sensor' s echoes usually decreases, due to attenuation,
For example, in Re, attenuation becomes increasingly more severe as
the temperature increases above 3000°R. Attenuation depends on the

material, vibrational mode, frequency and dampening external to the



wire. As reported previously, the attenuation decreases as the pulse
width of the ultrasonic signal increases (Fig. 3). 1

To determine if attenuation would be a significant problem at
temperatures greater than 4000°R and distributed as would be ex-
pected in a graphite furnace, measurements were made on a lead-in
line and a sensor that were heated to 5100°R in a self-heated Ta tube
(Fig. 4b). Figure 5 shows that when.a 5 in. Re sensor anda 14 in, W
lead-in line were heated to a temperature of 51000R in a carbon-free
vacuum, the sensor echoes, although attenuated, can be readily identified.
The pulse width of the ultrasonic signal used was 25 psec. This experi-
ment demonstrates that ultrasonic echoes can be identified from the end
of a line, 19 inches of which are essentially at a temperature of 5100°R,
Note that the actual expected temperature distribution is probably not as
severe as that simulated in this test.

Measurements were also pérformed to determine the feasibility
of using a tantalum lead-in line in place of the tungsten lead-in. It may
be desirable to use Ta in place of W, since Ta is more ductile than W
and is more easily joined to a Ta sheath. Further, there are no Ta/C
eutectics below 5300°R. A 5 in. Re sensor and a 14 in. tantalum lead-in
line were placed in a 19 in., Ta tube that was self-heated. Graphite felt
surrounded the Ta tube in the region where the Re sensor was located.
Figure 6 shows that echoes from the sensor, which was heated to
~5250°R, although attenuated, can be readily identified.
Tests in Graphite

Sheath Materials

In order to measure temperatures up to 5300°R in a carbon/
hydrogen/nuclear environment with a rhenium sensor, it is necessary
to use a sheath, since 53000R is above the Re/C eutectic. For this
environment, the principal sheath materials are Ta and W. One of the
sheath systems presently used by Los Alamos Scientific Laboratory to

protecf their thermocouples from hydrogen and carbon uses an outer



sheath of wrought W-2% 'I’hO.2 tubing and an inner liner of tantalum.

The outer sheath protects the system from hydrogen but not from carbon,
while the inner sheath protects the temperature sensor from carbon.
Tantalum forms a carbide at high temperatures and this carbide reduces
the diffusion rate of carbon through the sheath. If the wall of tantalum
liner is sufficiently thick very little carbon will diffuse through it (Fig. 7).2
However, Westinghouse Astronuclear Laboratory has found that wrought
W-2% ThO2 tubing by itself works satisfactorily in a carbon environment
at ~4700°R. Also, GE's Nuclear Materials and Propulsion Operation,
Cincinnati, reported the successful use of a W sheath to 5080°R in a
carbon/hydrogen atmosphere for one hour (W/Re thermocouple).3 GE's
work contradicts phase diagrams which show a W-WZC eutectic at
~49500R (Table I). A sheath constructed of tungsten would be attrac-
tive because it avoids hydriding (tantalum hydrides in the temperature
range IZOOOR—ZZOOOR). Tungsten' s drawbacks, however, include lower
carbon eutectic than Té, more brittle, offers less resistance to carbon
diffusion than Ta does; wrought tungsten tubing is more expensive than
tantalum tubing.

Tantalum Sheath Experiments

Ultrasonic tests were conducted on a sheathed rhenium sensor
to determine the maximum temperature at which the protected sensor
could measure temperature for a period of at least one hour. The
ultrasonic tests were performed in a helium atmosphere by self-heating
a tantalum sheath that was surrounded by graphite felt (Fig. 4a). The
transit time was measured automatically with the Pana-Therm 5000,
from which temperature was determined. Figure 8 shows that the
transit time can be measured in a Ta sheathed Re sensor, heated to
4850°R for 80 minutes. This sensor was maintained at a temperature
greater than ~4800°R for two hours with no noticeable degradation of

the ultrasonic signals.



After the sensor was cooled, it was reheated to a temperature
of 5100°R for 67 minutes. Figure 9 presents the echoes from the be-
ginning and end of the sensor at 5100°R. After running for over one
hour at 51000R, the system was cooled and then the temperature was
increased to 5300°R. At this temperature, the system survived for
three minutes, until the tantalum tube burned out. It should be ob-
served that one ultrasonic sensor was used to measure temperatures
greater than ~4800°R for three hours in a graphite environment
(Fig. 10). Using the present experimental techniques, numerous
high temperature measurements have been made relatively easily
in a carbon environment using a tantalum sheathed rhenium sensor.

The tantalum tubing used in the experiments had a wall thickness
of 0.012 in. This thickness seems sufficient to keep carbon from the
rhenium sensor at a temperature' of 5100°R for one hour. Measurements
were also made using sheaths with wall thicknesses of 0. 004 in. and
0. 007 in. ; these sheaths did not protect the sensor from the carbon at
a temperature of ~5000°R for one hour. The Ta thicknesses thus found
necessary to protect against carbon diffusion agree in general with those
of LASL (Fig. 7).

Tungsten Sheath Experiments

Similar ultrasonic tests were also performed in a graphite/helium
atmosphere using either chemically vapor deposited tungsten tubing or
wrought W-2% ThO2 tubing in place of the tantalum tube. The chemically
vapor deposited tubing had a wall thickness of 0. 011 in. and melted on
several occasions after being heated for 3-5 minutes at a temperature of
5100°R. The tube melted due to the formation of either the tungsten-
rhenium-carbon or the tungsten-carbon eutectic.

The wrought W-2% ThO,, sheath that was surrounded by graphite
felt was self-heated in a helium atmosphere. The tubing had a wall

thickness of 0. 011 in. Figure 11 shows that the transit time can be



measured in a W-2% 'I‘hO2 sheathed Re sensor heated to ~49000R for
60 minutes. The Re sensor was then heated to a temperature of 5300°R
for ~3 minutes. After this period the tungsten tubing burned out. This
demonstrates that wrought tungsten tubing will protect a Re sensor sat-
isfactorily for one hour at ~4900°R.

These experiments show that at a temperature of 5100°R a
tantalum sheathed rhenium sensor operates satisfactorily for one
hour in a carbon environment. For temperatures below ~49000R

wrought tungsten (W-2% ThOz) may also be used as a sheath.
Sheath Design

In measuring temperatures ultrasonically one can choose materials
such that it may be sufficient to protect only the sensor itself from the
carbon environment. It is not always necessary to protect the lead-in
line from the carbon, since the c'apability of the sensor to measure
temperature is essentially independent of any carbiding of the lead-in
wire, provided lead-in eutectics or embrittlement do not create problems.
This makes it possible to use a short sheath which protects the sensor
only. The short sheath would typically be ~8 in. long.

A short sheath design which protects only the sensor is shown in
Fig. 12. The sheath is a tantalum tube clad with an outer layer of
chemically vapor deposited tungsten. The sheath dimensions are about
8 in. in length with a wall thickness of 0. 010 to 0. 030 in. Due to the
short length of the sheath, it should be far less fragile, and less ex-
pensive to fabricate than a sheath several feet long fabricated of wrought
tungsten tubing.

In order to ultrasonically evaluate the short sheath design inex-
pensively, stainless steel tubing and nickel wires were used. Two sheath
designs were examined. For the first design the tubing was first
tapered, in order to blend the tube into the ultrasonic line, and then

silver brazed to the nickel wire. Various bonds were examined to



determine the effect of various tapers and amounts of silver braze on
the ultrasonic signal (Fig. 13). It was found that the braze and the end
of the tube caused echoes. The amplitude of the signal that was trans-
mitted through the tube was found to be approximately independent of
the size of the braze (length of braze << wavelength). The echoes from
the end of the sensor and the tube can be readily identified, if the tube
is 8 in. long and the sensor is 4 in. long (Fig. 14).

Figure 15 shows a second short sheath design. The tubing and
the sensor were silver brazed to the lead-in line as shown in Fig. 15.
Echoes from the end of the tube and the beginning and .end of the sensor
can be readily identified, if the sensor is 5 in. long and the tube is 8 in.
long (Fig. 16).

Another design entails using a sheath that is several feet in
length. The sheath would probably be very similar to the one used by
LASL. The sheath system would consist of an outer sheath of wrought
W-2% ThO2 tubing and an inner liner of tantalum. Alternatively, one
could use a Ta tube clad with chemically vapor deposited W. These
systems' advantages include (1) the lead-in will not become embrittled
by carbon diffusion, and (2) the only sheath weld in the hot zone occurs
at the far end. Disadvantages are (1) difficulty of fabrication, and (2)

high cost.
CONCLUSIONS AND RECOMMENDA TIONS

The recommended metallic sheath system consists of a Ta tube,
wall thickness greater than about 0.010 in., from about 8 in. long to
possibly as lnong as the entire line, clad with an outer layer of chemically
vapor deposited metal (Fig. 12). The sheath contains a Re sensor up to
0. 030 in. dia x up to 5 in. long,”< possibly a 0. 002 in. W spiral spacer

wire, and a W or Ta lead-in line or a combination of these materials or

*Either polycrystalline or single crystal tantalum or tungsten might also
prove to be suitable for use as a sensor, if hysteresis effects can be
eliminated.
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other refractory materials, e. g., Mo. Sheath materials are thus s{milar
to those used for thermocouples in a carbon/hydrogen nuclear environment,
but of geometry appropriate to the ultrasonic requirement. Due to new
developments in the field of high temperature materials, subsequent sheath
systems may be different from the one described above.

It is recommended that Phase III be performed. This involves test-
ing in a combined hydrogen/graphite environment, up to the maximum tem-
perature capability of available ovens, with 5300°R as a goal. It appears
that the required oven is available at LASL for testing the ultrasonic sys-
tem. Subsequently, if the tests in a hydrogen/graphite environment are

successful, measurements should be made in a nuclear environment.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the contributions of the follow-
ing personnel who assisted in the experiments at Panametrics: S. S. Fam,
K. A. Fowler and D. R. Patch. Particular thanks are due M. O. Dustin
of NASA-Lewis Research Center, for continued guidance and support dur-
ing the conduct of this work. Finally, we acknowledge the cooperation of
personnel at Los Alamos Scientific L.aboratory, especially B. Goodier,
J. Perry and C. Tallman, at Westinghouse Astronuclear Laboratory,
especially G. Remley and G. Zellner, and at General Electric, Cincinnati,

especially J. McGurty, E. Funston and W. Baxter.



Table I

Melting or Eutectic Temperatures

Material - Temperature, OR Reference
Re/WC 4649 Havell
Re/C 4966 Gonser
Re/Ta 5333 DMIC #152
Re/Ta/W 5333 DMIC #152
w/w,C 5369 Hall

wC 5387 Nadler
WZC 5405 Shaffer
Ta/TaZC (Ta-C) 5531 DMIC #152
Re/W 5576 DMIC #152
Ta 5884 Shaffer

Re 6226 Shaffer
TaZC 6611 Campbell
w 6629 Shaffer
TaC 7223 Campbell
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0. 060" diameter 0. 040" diameter 0. 030" diameter
Remendur wire W lead-in wire Re sensor

je— ~1t N a— 1' to 5t 3 1"to 5"~
Transducer
coil

Figure 1. Ultrasonic line used to measure temperature. The ultrasonic
echoes reflect from the beginning and end of the rhenium sensor,

Dimensions shown approximate the typical values for the present
program.



Figure 2,

Room temperature

0.1 v/cm 10psec/cm
~3900° R
0.1v/cm 10psec/cm

Oscillograms of echoes in 0,030" dia x 4" long rhenium wire
in a 22" long tantalum sheath, The diameter of the tungsten
spiral spacer wire was 0.002", The lead-in line was 0. 040"
diameter W and the pulse width used was 10usec.
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Room Temperature

1v/ecm 20 psec/cm

Weld Echo End Echo

i | ‘ ,
| | ) |
it e o e ’i”‘T“i“‘"Y‘"f"{'T"Y Foog Ao i »; 3 Tv.‘»v + 7 5 1 0 O R

l1v/em 20 psec/em

!

Weld Echo End Echo

Oscillograms of echoes in 0. 030" dia x 4" long rhenium sensor in
a 19" long tantalum sheath. The diameter of tungsten spiral
spacer wire was 0. 002'". The lead-in was 0. 040" dia tungsten and

the pulse width was 25 psec.

Figure 5,



Room Temperature

0.5 v/iem .20 wsec/cm

3 g

Beginning End of

of Sensor Sensor

5250°R

0.2 v/em 20 psec/cm

Beginning End of
of Sensor Sensor
Figure 6. Oscillograms of echoes in 0, 030" diameter x 5" long rhenium

sensor in a self-heated 19" Ta sheath, The sheath was

surrounded by graphite felt., The lead-in was 0. 040" diameter
tantalum.
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Room Temperature

0.1v/cm 4 pusec/cm
Beginning End of
of Sensor Sensor
4850°R

0.05 v/cm 4 psec/cm

T

Beginning End of
of Sensor Sensor

Figure 8. Oscillograms of echoes in 0.030" diameter x 2" long rhenium
sensor in a self-heated tantalum sheath. The sheath was
surrounded by graphite felt,



Room Temperature

2v/cm 10 psec/cm

Beginning

End of
of Sensor

Sensor

5100°R

2 v/iem 10 psec/cm

Beginning End of
of Sensor

Sensor

Figure 9., Oscillograms of echoes in 0, 030"

diameter x 2" long rhenimm
sensor in a self-heated tantalum sheath, The sheath was

surrounded by graphite felt and the rhenium was heated to a
temperature of 5100°R for 67 minutes.
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Room Temperature

0.05v/cm 5 pusec/cm

Beginning End of
of Sensor Sensor

4900°R

0.05v/cm 5 psec/cm

! T

Beginning End of

of Sensor Sensor

Figure 1l. Osillograms of echoes in 0. 030" diameter x 2" long rhenium
sensor in a self heated W-2% ThO_ sheath. The sheath was
surrounded by graphite felt and the lead-in wire was 0. 040"
diameter W.
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Room Temperature

l1v/em 20psec/cm

v Vv v
Braze Sensor End of tube
Echo Echo Echo

Last inch of tube heated
with torch

1v/em 20 psec/cm

Braze Sensor End of tube
Echo Echo Echo

Figure 14. Oscillograms of echoes in 0, 056" dia x 4'' long nickel sensor
ina 0.096" x 8" long stainless steel tube.
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Figure 16, Oscillogram of echoes in 0, 067" diameter x 5'' long nickel
sensor in a 0,126" diameter x 8" long stainless steel tube,
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ULTRASONIC THERMOMETRY FOR NUCLEAR REACTORS
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ABSTRACT

Ultrasonic thermometry, based on the tem-
perature dependence of sound velocity in solids,
has been demonstrated under ideal laboratory
conditions beyond 6000R. Integrated fluxes (nvt)of
2.6 x 1019 fast and 8.7 x 1019 thermal do not per-
turb the velocity/temperature relationship. Ta pro-
tective sheaths prevented carbon contamination for
1hr at 5100R, in a program simulating temperature
measurements in the graphite/hydrogen atmosthere
of a nuclear rocket engine. Tests have also been
performed in liquid sodium at 1200R, and sepa-
rately, inside a 1. 6 mm dia Ta tube heated to
5500R, simulating temperatures inside UOZ—fueled
pins of fast breeder reactors.

Introduction: The difficulties in measuring tem-
perature in nuclear reactors stem mainly from
severe environmental conditions including nuclear
radiation, high temperatures (particularly in the
fuel elements), materials compatibility and geo-
metrical restrictions. Until recently, most ap-
proaches to nuclear thermometry have been based
upon thermocouples. Thin wire ulitrasonic sys-
tems, however, utilizing the temperature depend-
ence of the speed of sound in solids, offer an
alternative to thermocouples. 1-3 principle,
ultrasonic thermometers obviate a number of the
limitations inherent in thermocouple approaches.
So far, ultrasonic data have been obtained in the
laboratory beyond 60008 ~®By 1970, it is antici-
pated that ultrasonics will demand the active at-
tention of those responsible for temperature
measurement and control, to the extent that po-
tential advantages such as accuracy, stability,

reliability, small sensor diameter and low system
! cost, can, in fact, be demonstrated.

Pulse-Echo System. One type of ultrasonic
pulse-echo system is shown in Figs. la and lb.
The Pana- Therm electronic instrument gutomat-
ically measures the round trip time necessary
for the ultrasonic wave to traverse the sensor.
The response time of the instrument is 0.1 sec.
Time resolution is 0. 1 psec, corresponding to a
temperature precision of 1% at 5000R, for a 50
mm (2'") sensor. Figure 2 presents the transit
time vs temperature for various solids. Given
these calibration curves, the transit time/tem-
perature curves for other materials may be
readily established by heating them side-by-side

“Panametrics, Inc., 221 Crescent Street,
Waltham, Massachusetts 02154

with standard materials, for example, in a tube,
as shown in Fig., 3. Such systems are being
developed to automatically measure temperatures
up to ~5500R in liquid metal fast breeder reactors
(LMFBR's) and also to 5300R in a nuclear rocket
engine.

Nuclear Rocket Engine, For the hydrogen/

graphite/nuclear rocket engine environment, Re
sensors have received primary attention.®™ Bare
self-heated Re sensors have been tested up to the
melting point (6216R) in carbon-free vacuum, in-
cluding thermal cycling to 5300R. Rhenium sen-
sors have also survived brief tests in a hydrogen/
graphite atmosphere up to ~4765R. Where neces-
sary, protective sheaths, similar to the types
developed for thermocouple applications, can be
used, For example, Ta sheaths have protected
Re sensors from carbon up to 5100R for one hour
(Fig. 4). Rhenium wires irradiated to 8.7 x 1019
integrated thermal flux and 2, 6 x 1019 integrated
fast flux showed no significant radiation effects

in the transit time/temperature characteristic.

To minimize errors due t0 gamma heating (> 100
w/g), one approach has been to use very thin sen-
sors, e.g., dia < 0.1 mm, sheath OD < 1 mm.

Fast Breeder Reactor. Another ultrasonic sys-
tem is being developed to automatically measure
coolant, cladding and fuel temperatures in
LMFBR's at temperatures up to ~1700, 1800 and
~5500R, réspectively.5 The feasibility of employ-
ing the cladding itself (pat. pending) as a fem-
perature sensor has been demonstrated on an
empty fuel pin in the laboratory (Fig. 5). Also,
ultrasonic pulses have been transmitted back and,
forth through 15 m (50 ft) of W lead-in wire, 6 m
(20 ft) of which were at ~2500R, and through self-
heated W sensors to their melting point, ~6630R.
Ultrasonic tests on bare and sheathed W and SS
304 lines immersed up to 6 m (20 ft) in 1200R
sodium showed that the attenuating effects due to
sodium viscosity and impedance were negligible.
The relative immunity to electrical noise of
an ultrasonic line is rather obvious. Not imme-
diately obvious, however, is its immunity to low
frequency vibrations. Figure 6 demonstrates
that when the sheath, or even the line itself, is
vibrated by a doorbell buzzer, there is apparent-
1y no S/N degradation. Besides the ultrasonic
pulse frequencies being far above the usual me-
chanical noise frequencies, one may also employ
ultrasonic torsional waves to achieve further
separation of signal from those noise sources
which excite flexural or extensional modes in
the line.

Preprint from IEEE Trans. Nuclear Science (February 1969).



A complete ultrasonic thermometry system
including the Pana-Therm 5010, pressure-tight
transducer, a sheathed 6 m SS 304 lead-in con-
taining two 50 mm radius bends (for radiation
shielding), and a Re sensor 50 mm long centered
in a 150 mm long x 1, 6 ram dia Ta tube, was op-
erated in our lab with the lead-in at 1700R, and,
separately, with the sensor at 5500R. It is
planned to install such a system in a high tem-
perature, fast flux facility for further evaluation
with respect to fuel meat and cladding thermom-
etry.

Integrated Flux, It is interesting to contemplate
whether the above systems might be used to mea-
sure nuclear parameters other than temperature -
namely, integrated flux. The physical basis for
such a measurement lies in the different sensi-
tivities which different materials exhibit for tem-
perature and integrated flux. Copper, for ex-
ample, exhibits substantial changes in Young's
modulus due to irradiation, while Al is relatively
insensitive for comparable exposures. Moduli
for both metals, however, respond to tempera-
ture changes. Figure 7 illustrates a line con-
taining concentric sensors. The Joule-Wiedemann
transducer simultaneously launches both exten-
sional and torsional waves. Transducer geo-
metry matches both modes to the lead-in. At

the plane where the concentric sensors join the
lead-in, dimensions may be chosen so that the
torsional wave primarily interrogates the outer
Cu tube, while the extensional wave mainly sees
the axial Al sensor (pat. pending). Assuming
isothermeal conditions, the Al sensor would be
used to measure the local temperature, and

the Cu sensor, the integrated flux. If may also
be possible to derive further information on neu-
tron damage via attenuation measurements. We
have not yet, however, demonstrated either of
these integrated flux or neutron damage measure-
ment possibilities.

Advantages. Regarding thermometry in nuclear
systems, ultrasonics offers two principal advan-
tages over thermocouples - a wider choice of
sensor materials and geometries. For example,
at low temperatures, say, up to ~1000R, Al is
of interest as an ultrasonic sensor. To 2000R,
SS is a candidate, especially SS parts of the fuel
pin itself. Ruthenium and Mo are of interest to
~4000R, while Re, Ta and W appear useful up to
the 5000 to 6000R range. As new refractory
materials become available, they become candi-
date sensors, to overcome those limitations
which present materials may impose. The
choice of sensor geometries, such as wire < 0.1
mm dia, ribbon, tube, etc., and rmonolithic, one-
material, weld-free construction, is also attrac-
tive. This measurement depends on density and
elastic properties of the sensor, not electrical

properties.* Avoiding the need for a high tempera-
ture electrical insulator overcomes another dif-
ficulty inherent in thermocouples.

Disadvantages. Ultrasonic thermometry is just
now gaining gradual acceptance in industry.
Therefore, practical field experience is limited.
Lifetime /stability data, and the effects of high
flux rates for extended periods, up to ~10 2 nvt,
are yet to be determined,

Acknowledgment,” The authors gratefully acknowl-
edge the support of NASA and the AEC, and the
guidance provided by Dragon Project personnel,
especially E. A, Thorne and Prof. J. F. W. Bell,
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TRANSCEIVER WITH DIGITAL DISPLAY Basic components for the automatic

measurements of ultrasonic pulse
transit time through a wire sensor,

goo

PULSE TRANSIT -r-—-—-|
00 o o TIME IN SENSOR

T R ' __“ h
TRIGH-TEMPERATURE — 1
1 ENVIRONMENT 1
Pu— — I i
{Jﬂm PING PAD OR hY LEAD-IN WIRE i SENSOR i
2nd LEAD-IN & ':LAL%’\‘{ETOSTRICTWE L _i

Fig. la. Ultrasonic thin wire thermometer.

*The same equipment and techniques described

above for measuring temperature can also be ap-
plied to measuring physical properties. Young's
modulus, shear modulus and Poisson' s ratio can
be readily determined in thin wire, tube or ribbon.
We have tested metals, ceramics, graphites,
plastics, paper, wood, glass, etc. in this manner.
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Fig. 4. Test configuration to determine how well Ta tibe protects sensor frorn'ggraphite
at high temperature. Ta tube, ~1.6 mm OD x 0. 3 mm wall x 150 mm long, is heated elec-
trically beyond 5000 R using currents less than 100 amps. '

P i“’: e LOW Spacing Wire t74' O.D. «. .009 Wall Tubing
Prcu‘ssumbled Fuel Element Tubing, Spucin in, ar
l /f ’f l . hing, Spacing Wi &Adam‘ _,/
// / ’ —
o 0. 05" tungsten
0. 06" nickel load=an wire
alloy
magnetostrictive
wire
10 ps fom
Fig. 5. Experimental arrangement illustrating
use of ~10 cm length of SS cladding as a sensor.
Echoes originate near ends of cladding section 10mV/cm
as indicated by arrows.
b i ! i
. 57-"7. ‘ Ilmm Alurm_——:{ 5
k. ‘ e o — j
t l l kN'l t \Cu _T
Q 973

Fig. 6. Ultrasonic signal is "loud and clear"
despite doorbell buzzer ringing against sheath,
or even against the line itself, Signal/noise
ratio remains high for either extensional or tor-
sional waves. i
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Fig. 7. Coaxial sensors for measuring two en-
vironmental parameters, or radial temperature
distribution. Above sketch shows Al axial wire

to sense temperature, and Cu tube to sense inte-
grated flux. Joule-Wiedemann transducer simul-
taneously launches extensional and torsional waves
in nickel tube, Materials and dimensions are )
chosen to match hoth waves to the lead-in. Wave-
form sketches show extensional echoes El and E2
primarily from the Al wire, and E3 from the end
of the Cu tube, The two main torsional echoes Tl
and T3 are from the Cu tube. The smaller T2
comes from the Al wire. Thus, each mode inter~
rogates a different sensor. Such dual-mode de-
signs exploit the different impedances seen by
different waves in the same line.
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